A-A+

为什么人夜晚睡觉不会口渴

2019年12月12日 英语美文 暂无评论
摘要:

英文原文The bodys internal clock helps to regulate a water-storing hormone so that nightly dehydration or trips to the toilet are not the norm, research suggests.In an article published in Nature N

前言:美文网是一个专业为广大读者朋友提供各种类型文章在线阅读以及摘抄借鉴的网站,以下是小编精心整理的文章。

.Tbl466 { display:none; }


verywen.com


The body's internal clock helps to regulate a water-storing hormone so that nightly dehydration or trips to the toilet are not the norm, research suggests.

www.verywen.com


In an article published in Nature Neuroscience today, neurophysiologists Eric Trudel and Charles Bourque at the Research Institute of the McGill University Health Centre in Montreal, Canada, propose a mechanism by which the body's circadian system, or internal clock, controls water regulation1. By allowing cells that sense water levels to activate cells that release vasopressin, a hormone that instructs the body to store water, the circadian system keeps the body hydrated during sleep. 美文网


"We've known for years that there's a rhythm of vasopressin that gets high when you're sleeping. But no one knew how that occurred. And this group identified a very concrete physiological mechanism of how it occurs," says Christopher Colwell, a neuroscientist who studies sleep and circadian rhythms at the David Geffen School of Medicine at the University of California, Los Angeles. copyright verywen.com


The body regulates its water content mainly by balancing water intake through thirst with water loss through urine production. People don't drink during sleep, so the body has to minimize water loss to remain sufficiently hydrated. Scientists knew that low water levels excite a group of cells called osmosensory neurons, which direct another set of neurons to release vasopressin into the bloodstream. Vasopressin levels increase during sleep; clock neurons, meanwhile, get quieter.

Trudel and Bourque tested the idea that lower clock-neuron activity might allow osmosensory neurons to more easily activate vasopressin-releasing neurons, which would mean more water retention and less urine production during sleep. verywen.com


To do this, they isolated thin slices of rat brain containing intact sensory, vasopressin-releasing and clock neurons. Even when removed from the brain, clock neurons continue to mark time. verywen.com


The duo then stimulated the sensory neurons and recorded any electrical activity in the vasopressin-releasing neurons to monitor communication between the two cell groups. The researchers then moved on to look at the effect of the clock cells on this pathway. When they did not activate the clock cells during the 'sleep' part of their cycle, it was easier for the sensory cells to communicate with vasopressin-releasing cells. Conversely, when they activated the clock cells, this communication decreased markedly. copyright verywen.com


The results suggest that clock cells function as a dimmer switch for water control. When their activity is high, they prevent sensory cells from instructing secretory cells to release vasopressin. Then, when clock cells are less active, sensory cells can easily instruct secretory cells to release vasopressin, ensuring that the body holds on to its water reserves. 内容来自美文网


Colwell points out that the study was done in rats, which are nocturnal. Although the vasopressin cycle and clock-neuron activity are similar in rats and humans, the question of whether the same mechanism occurs in animals that sleep at night remains to be answered. 美文网


"We show this for this one circuit, but it's possible that clock neurons regulate other circuits in a similar manner and this remains to be studied," says Bourque. He speculates that future studies might reveal whether the same mechanism regulates hunger, sleepiness and other aspects of physiology related to circadian rhythms. verywen.com



声明:美文网所有文章均来源网络,如有侵权请联系本站删除,如果您觉得我们的文章还不错,可以收藏本站以便下次阅读。

给我留言